
Z. Phys. B - Condensed Matter 72, 535-543 (1988) Condensed 
Zeitschrift Matter fi3r Physik B 

�9 Springer-Verlag 1988 

Mean relaxation time approximation 
for dynamical correlation functions in stochastic systems 
near instabilities 
II. The single mode  laser 

W. Nadler* and K. Schnlten 
Physik Department, Institut T 30, Technische Universit/it Mfinchen, 
Federal Republic of Germany 

Received February 4, 1988; revised version April 28, 1988 

Correlation functions for the stochastic description of the single mode laser are investigat- 
ed using the simple approximation method presented in part ! [1]. The application of 
the mean relaxation time approximation to stochastic systems with state spaces of dimen- 
sion d > 1 is thereby demonstrated. Our approach yields results which are indistinguish- 
able from the actual lineshape. Hence, they constitute a slight improvement over the 
results of Risken and co-workers, where these results are based on an analysis of the 
lowest eigenvalue of the stochastic operator. 

1. Introduction 

In part I of the present series [1] we presented a sim- 
ple approximation for dynamical correlation func- 
tions in stochastic systems, called the mean relaxation 
time approximation (MRTA). The MRTA is the low- 
est order approximation of a more general approach, 
the generalized moment expansion method [2] (GME), 
which is based on a simultaneous high- and low-fre- 
quency expansion of the exact correlation functions. 
The GME has been applied successfully to the de- 
scription of observables for various stochastic trans- 
port processes, e.g., particle number correlation func- 
tions in reaction-diffusion systems [3, 4] and the 
M613bauer absorption spectrum of Brownian parti- 
cles modelling protein-internal motions [5-7]. Since 
the method takes into account also the low-frequency 
properties of the exact correlation functions, it is par- 
ticularly suited for the correct description of the long- 
time behavior of these observables. The long-time be- 
havior of correlation functions is of particular interest 
in systems near instabilities. At instabilities one ex- 
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pects slow relaxation processes (critical slowing 
down). Conventional methods based solely on high- 
frequency approximations, like the Mori-Zwanzig 
formalism [8, 9] (without additional refinements like 
the mode-coupling approach, see [10] and references 
cited therein), can give incorrect results in such a situ- 
ation. In Part I we have demonstrated that already 
a lowest-order approximation, the MRTA, is able to 
describe correctly the critical slowing down of correla- 
tion functions in the Schl6gl models, which describe 
autocatalytic chemical reaction systems exhibiting 
phase transitions. 

Here we employ the MRTA to analyze correlation 
functions in the stochastic description of the single 
mode laser [10-14]. Due to the spontaneous emission 
processes in the laser medium, the electrical field am- 
plitude of the laser radiation undergoes stochastic 
fluctuations [15]. These fluctuations, in particular the 
stow phase fluctuations, become relevant at and 
above the laser threshold, and are responsible for the 
actual spectral lineshape of the laser radiation. 
The stochastic model for the single mode laser has 
been investigated extensively, see [10-14] and refer- 
ences cited therein. Our goal in this communication 
is 
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(i) to demonstrate how the MRTA can be applied 
to stochastic systems with state spaces of dimension 
d > 1 (the single mode laser is a generic example for 
such systems); and 
(ii) to demonstrate that the known results for the 
single mode laser, which were previously determined 
mainly by eigenvalue analysis [11-14], can be deter- 
mined alternatively by the MRTA in a coherent and 
(numerically) simpler way. 

We will show that the MRTA obtains additional 
improvements over the known results for an effective 
single-Lorentzian description of the lineshape. 

In the next section we shall treat the case of the 
single mode laser without detuning. Analytical and 
numerical results for the inverse effective linewidth, 
i.e. the mean relaxation time, of the intensity and field 
amplitude fluctuations are derived. In Sect. 3 a gener- 
alization of the model to the case of detuning of the 
atomic transition and resonance cavity frequencies is 
considered. To deal with this case a modification of 
the MRTA is presented, and effective linewidth and 
frequency shift are determined numerically. The re- 
sults and possible extensions to other applications are 
discussed in Sect. 4. In an Appendix we show how 
the MRTA can be applied to one-dimensional system 
with multiplicative white noise. 

2. Single mode laser 

In the case of the single mode laser, stochastic fluctua- 
tions of the complex field amplitude E of the laser 
radiation are described by the Fokker-Planck equa- 
tion [14] 

~ttP(E, t) = L(E) p (E, t) (2.i) 

for the probability distribution p(E, t), where L(E) 
denotes the Fokker-Planck operator 

(2.2) 

The pump-parameter a is negative below and positive 
above the laser threshold. The Fokker-Planck opera- 
tor (2.2) describes a stochastic system that obeys the 
principle of detailed balance [14], and the drift forces 
in (2.2) can be derived from a potential 

U(E)=--�89188 [El 4. (2.3) 

Therefore, the stationary distribution of (2.1) is given 
by the Boltzmann distribution, 

The spectral lineshape of the laser radiation is deter- 
mined by the steady state autocorrelation functions 
of the intensity fluctuations, 

C,(t) = <6I(0) 3I(t)), (2.5a) 

or the field amplitude fluctuations, 

cE(t) = <aE*(0) aE(t)>, (2.5b) 

depending on the experimental setup (see e.g. [16] 
and [17]. < ) denotes average with respect to the sta- 
tionary distribution po(E) and has also the properties 
of an inner product on the space of functions, which 
will be used below. The intensity I is given by I = IEI z, 
and intensity and field fluctuations are 61=1-<I) 
and 6E = E - - ( E ) ,  respectively ( ( E ) =  0 in our case). 

In the MRTA the correlation functions (2.5) are 
approximated by a single exponential, 

Cj (t) ~ Cj(0) exp (-- t/~y), j = I, E, (2.6) 

with C,(0)=<I2)-(I) 2, and Ce(O)=(]EI2)=(I). 
The mean relaxation times % and ~ in (2.6) are given 
by matrix elements of the inverse of the adjoint 
Fokker-Planck operator, 

L+ (E)=[~+(a--[E[2)E] O~E*' (2.7) 

through 

z ,  = - -  < 6 1  [ L  + ( E ) ]  - ~  61)/C,(0), (2.8a) 

and 

I; E ~--- - -  < 6 E *  [ L  + ( e ) ]  - 1  6E>/CE(O). (2.8b) 

This special form of approximation can be derived 
from a consideration of the Laplace-transported ob- 
servable [1], e.g. in the case of CE(t), 

(~e(co) = S e-~Ce(t) 
0 

= ( f ie*  [m-- L + (E)] -  t bE).  (2.9) 

A formal expansion of CE(co) for small frequencies 
gives 

8E(co)- ~ (-@"~_~.+.. (2.1o) 
n = 0  

The expansion coefficients (generalized moments) #_~ 
are given by matrix elements of powers of the inverse 
adjoint Fokker-Planck operator, 

po(E) ocexp(-- U(E)). (2.4) /~_, = (-- 1)" <bE* [L + (E)] -"3E).  (2.11) 



In order to correctly describe the short-time and the 
long-time behavior of the correlation function, the 
approximation given in (2.6) has to reproduce C~ 
(t = 0) and CE (co = 0), the latter being the lowest mo- 
ment #-1 of the low-frequency expansion (2.10), 
thereby leading to (2.8) for the relaxation times. High- 
er-order approximations could be obtained by assum- 
ing instead of (2.6) a series of exponentials which have 
to reproduce more moments of (2.10), and of the cor- 
responding high-frequency expansion, see [2-7]. 

We note that the single-exponential form (2.6) of 
the approximate correlation function corresponds to 
an approximation of the spectral lineshape of the fluc- 
tuations by a single Lorentzian, i.e. 

Re {C~(io))} z C:(O) 1 
"Cj (D2 + "Cj - 2 '  j=I,E, (2.12) 

with the effective linewidth given by the inverse of 
the mean relaxation time ~. This effective linewidth 
is in a sense the best possible single-Lorentzian de- 
scription of the exact spectral !ineshape, since it repre- 
sents an interpolation between the correct long-time 
(low-frequency) behavior and the correct short-time 
(high-frequency) behavior. 

2.1. Intensity fluctuations 

In order to consider the intensity fluctuations it is 
appropriate to transform the complex field E to its 

intensity I and phase ~0 through E = 1/ /cxp (i 9). This 
transformation leads to the following form for the 
adjoint Fokker-Planck operator 

1 02 
L + (I, 9) = Lg (I) + 7 ~ ~~ ~ (2.13) 

with the intensity part L~- (I) having the form 

Lg(I)= + (a--I) I 4 1 ~ .  (2.14) 

For the determination of the matrix clement in (2.8 a) 
the angular part in (2.13) is irrelevant. Therefore, the 
relaxation rate is determined solely by the one-dimen- 
sional adjoint Fokkcr-Planck operator (2.14). This 
operator is of Smoluchowski type [14] for which the 
adjoint has the general form 

L+(I)=[~--7--(~--~U(I))]D(I) ~ .  (2.15) 

Equation (2.15) describes a one-dimensional diffusion 
process in a potential U(I) with a position dependent 
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diffusion coefficient D(I). In our case, the diffusion 
coefficient is given by D (I) = 4 I, and the potential U (1) 
is given by (2.3), with IEI 2 replaced by I. In [18] we 
have shown that for an adjoint Fokker-Planck opera- 
tor (2.15) the matrix element of the inverse operator, 
as it appears in (2.8a), can be determined by evaluat- 
ing the integral 

(3I [L + (I)] - ~ ~I> 

; idI'po(I')M '2. = dI[D(I)po(I)] -a (2.16) 
0 0 

By employing the representation 

I 

dI' po(I') gH'- 
0 

a 

for the innermost integral and using numerical ap- 
proximations [-19] for the error function, (2.16) can 
be easily evaluated via numerical integration. 

Figure 1 shows the results for the effective line- 
width, i.e., the inverse of the mean relaxation time 
z x, obtained from a numerical evaluation of the inte- 
gral (2.16). We note that our linewidth is identical 
to the effective linewidth considered by Risken and 
Vollmcr [12, 14] given by 

1 oo ~ (2.18) 

7 =.Y,= '~o.' 

where the 2o, denote the (nonzero) eigenvalucs of the 
intensity part (2.14) of the full Fokker-Planck opera- 

15. 

,< 10. 

O 

5. 

s i n g l e  m o d e  l a s e r  / i n t e n s i t y  c o r r e l a t i o n  

l 1 l l t / l ' l 
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-4. -2. O, 2. 4. 6. 8. I0, 

pump parameter a 

Fig. 1. Effective linewidth 2 for the intensity fluctuations vs. pump- 
parameter a. ( - - )  is our result from a numerical integration of 
(2.16); note that this is identical to Risken's result [12, 14]; ( - - - )  
is the result of Grossmann's mode-coupling calculation 1-10] 
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tor (2.13), and the V, denote the corresponding expan- 
sion coefficients of C~(t). 2 has been determined by 
Risken and Vollmer [12, 14] by summing up accord- 
ing to (2.18) the lowest numerically determined eigen- 
values and expansion coefficients. The M R T A  gives 
a single analytical expression for this quantity, (2.16). 
For comparison we included in Fig. 1 the results ob- 
tained by Grossmann from a mode-coupling approxi- 
mation [113]. This approach is seen to underestimate 
the effective linewidth. 

We would like to note at this point that fluctua- 
tions of the pump parameter a, relevant in dye lasers 
[20-231 give rise to stochastic models featuring mul- 
tiplicative noise. In the Appendix we show how the 
framework of the M R T A  applies in such a situation. 

2.2. Field amplitude fluctuations 

In the following we write the complex field amplitude 
E as vector 

E =  IEI (c~ ~~ (2.19) 
\ s i n  ~0 / 

where the first component represents the real part, 
and the second component represents the imaginary 
part of E. In this representation the adjoint operator 
is 

1 0 2 
L + (E) = L~- (I EI)-~ I EI 2 a 9 ~ '  (2.20) 

and the radial part L~- (IEI) can be written as 

1 a 
L~ (IEI)=IEIPo(IEI) ~[E~l IEIPo(IEI) 01El" (2.21) 

To determine the matrix element in (2.8b) we first 
define an auxiliary vector function ~t_ ~ (E), through 

p_ a (E) = -- [L + (E)] - ~ 3E. (2.22) 

P-1 (E) is, in effect, the right hand side function in 
the scalar product that contributes to the matrix ele- 
ment in (2.8b). This auxiliary function can be deter- 
mined as the solution of the equation 

L + (E) p_l  (E) = - bE (2.23) 

with reflective boundary conditions [7, 18]. We first 
make the ansatz 

_, (E)= (1 El) (cos 691. (2.24) 
\sin q~ / 

This ansatz leads to the one-dimensional equation 

for the radial #_ 1(lED, where we have already taken 
into account that the average of E vanishes. Equation 

(2.25) has to be supplemented with reflective bound- 
ary conditions for tE t=0  and IEI ~ ~ ,  see [7] and 
[t8].  The operator on the left hand side of (2.25) cor- 
responds to an adjoint one-dimensional Fokker- 
Planck operator with a reactive term. Such a term 
renders a general analytical solution of this equation 
impossible, and, due to its singular nature, methods 
for treating it in a perturbative way also fail. However, 
the differential Eq. (2.25) can be very easily solved 
numerically by discretizing the one-dimensional state 
space for IEI, employing the methods of [7]. In this 
discretization scheme the singular nature of the reac- 
tion term gives no problems since the singularity lies 
on the (lower) boundary of the state space. The result- 
ing linear equation is of tridiagonal form and can, 
therefore, be directly solved using the Gaussian elimi- 
nation scheme [19]. In an actual calculation one has 
to introduce an upper limit for the state space, and 
the independence of the numerical results from this 
upper limit, as well as from the actual value of the 
discretization length, have to be checked. The matrix 
element is finally determined from the auxiliary func- 
tion/~_ 1 (lED through the integral 

#_, = <6E* [ L  + ( E ) ] -  a bE) 
2 ~  cO 

= ~ ~ IEl[E'~-,(E)]Po(IEI)dlEIdq~ 
o o 

a3 

=2~z j IEI2m-l(lEI)Po(IEI)dlEI. (2.26) 
o 

In Fig. 2 our numerical results for the linewidth 
factor 7 are presented and comparison is made with 

s i ng l e  m o d e  l a s e r  / a m p l i t u d e  c o r r e l a t i o n  

I I I I I I 

v<. 
a= 1.5 \ ' "  \ " \  

\ ' % .  

1 
; 1 I I I I 

-4 -2 0 2 4 6 8 10 

pump parameter a 

Fig. 2. Linewidth factor a for the field amplitude fluctuations vs. 
pump-parameter a. ( - - )  is our result from a numerical solution 
of (2.25) and (2.26); ( - - - )  is the result of Grossmann's mode coupling 
calculation [10]; ( . . . .  ) is the result of Risken's numerical approxi- 
mation [11, 14]; ( - . - )  is the result of Ziegler and Horner's analytical 
approximation [24], (2.28) 
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Fig. 3. Lineshape (2.12) of the field amplitude fluctuations resulting 
from the approximations in Fig. 2 for a pump-parameter a = 4 ;  the 
linetypes correspond to those in Fig. 2 

the mode-coupling results by Grossmann [10], and 
with the results of the eigenvalue analysis by Risken 
[11, 14]. The linewidth factor is, in effect, the inverse 
of the mean relaxation time, 

G )  c~ - (2.27) 
"EE 

The discrepancy between our results and the results 
of Risken stem from the fact that Risken considers 
only the lowest eigenvalue 21o of the operator (2.20), 
since it gives the main contribution to the decay of 
C~(t). The mean relaxation time calculated by our 
method takes into account also the contributions 
from the other eigenvalues, as was already the case 
for the intensity fluctuations, see (2.18). 

In order to evaluate how the discrepancy between 
those three different results is reflected in the corre- 
sponding lineshapes, (2.12), we represent them in 
Fig. 3 for a pump-parameter a=4.  We choose this 
value of a since here the discrepancy between the three 
different results is relatively large. A comparison with 
a higher-order approximation based on the GME ac- 
cording to [2] and [7] shows that our MRTA de- 
scription is indistinguishable from the exact lineshape. 
Risken's results are already very close to the actual 
lineshape, however our results represent an additional 
small improvement. It can be seen that Grossmann's 
mode-coupling results give an inaccurate description 
of the low-frequency part of the lineshape. This is 
no surprise since Grossmann's results are based on 
a high-frequency expansion, although refined by the 
mode-coupling approximation. 

We note that Ziegler and Horner [24] have calcu- 
lated selfconsistently a quantity that corresponds to 
our mean relaxation time, using a partial summation 

539 

of a perturbation expansion (corresponding to a ran- 
dom phase approximation). Their analytical result for 
the linewidth factor 

1 O~zn = 2 (2.28) 

is compared with our numerical results also in Fig. 2. 
It can be seen that, although they differ from each 
other, Ziegler and Horner's analytical approximation 
and Risken's numerical approximation are about 
equally close to our numerical results. 

3. Detuned single mode laser 

If there is a mismatch between the frequency of the 
atomic transition in the laser medium and the fre- 
quency of the resonance cavity, the laser is detuned. 
This situation can be described by a modification of 
the Fokker-Planck operator (2.2) [13, 14, 25], its ad- 
joint having the form 

L] (E)=[~+(I +if)(a--IEI2)E] O (3.1) 

6 is the detuning parameter which is proportional 
to the frequency difference between the atomic transi- 
tion and the cavity frequency. For the stochastic sys- 
tem described by (3.1), the stationary distribution for 
the field amplitude E is still given by Po (E), (2.4), with 
the potential U(E) given by (2.3). Therefore, the static 
properties of the detuned laser remain unchanged 
upon going from (2.2) to (3.1) [13, 14]. However, dy- 
namic properties are changed, since the detuning in- 
duces an angular drift [26]. This angular drift can 
be seen by transforming again the complex field am- 
plitude E to the vector E according to (2.19). In this 
representation the adjoint Fokker-Planck operator 
has the form 

1 ~2 
(3.2) L2(E)=Lff(IEI)+,5(a-IEI 2) -~ iEi 2 ~ o  2'  

where the part L~-(IE[) is given as before, (2.21). It 
turns out that the angular drift term in (3.2) does 
not affect the intensity correlation function [13, 14]. 
However, the behavior of the field amplitude correla- 
tion function, (2.5b), is changed, and one expects an 
oscillatory behavior in this correlation function, su- 
perimposed on the decay of the fluctuations. 

Such an oscillatory component in the decay of 
correlation functions can only occur in stochastic sys- 
tems with a state space of dimension d>  1. Another 
simple example of a system that exhibits this behavior 
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is an underdamped Brownian particle in a harmonic 
potential, as described by the Kramers equation for 
the position and velocity of the particle [14]. Clearly, 
the M R T A  as defined in (2.6) cannot describe oscilla- 
tory behavior [27]. In the following we introduce an 
extension of the M R T A  that accommodates the ap- 
proximate description of this behavior of correlation 
functions in higher-dimensional stochastic systems. 

3.1. Modified MRTA 

The most simple approximation taking into account 
that oscillations are superimposed on a single-expo- 
nential decay of a correlation function is 

C~(t) ~ CE(O) exp(-- t/ze) cos (f2E t). (3.3) 

In the spirit of the MRTA, the approximation (3.3) 
should describe correctly the long-time, i.e., low-fre- 
quency behavior of the exact correlation function. 
Therefore, we require (3.3) to reproduce the first two 
moments #_a and /t-2 of the low-frequency expan- 
sion (2.10). Taking into account the representation 
of these moments as matrix elements of the inverse 
adjoint Fokker-Planck operator, (2.11), this leads to 
the following equations for the parameters ze and 
O E of approximation (3.3): 

zF=(1 +e)/~_ 1/CE(0) 
= - (1 + e) <fiE* [L + (E)] - ~)/CE(O) (3.4a) 

and 

(2~=_1/~, 
"c E 

(3.4b) 

with 

= 1 - CE (0) # -~  = 1 - CE (0) 
(6E* [L + (E)] - 2 fiE) 

(6E* [L + (E)] - t c5E)2 �9 
(3.4c) 

We note that for e--+ 0 the mean relaxation time z~ 
assumes the old form, (2.8b). In the same limit O~ 
vanishes. The parameter e is, therefore, a measure for 
the deviation of the behavior of the exact correlation 
function from a single-exponential decay. In the modi- 
fied M R T A  it is assumed that this deviation arises 
solely from a superimposed oscillation. We will see 
that for the field amplitude correlations of the detuned 
single mode laser this assumption is justified. 

A negative value of e would give rise to an imagi- 
nary frequency f2~, resulting in a purely relaxational 
behavior of the approximate correlation function, 
(3.3). Such a result would indicate that the dominant 
behavior of the correlation function is not oscillatory. 

In fact, by a spectral expansion of the correlation 
function, cf. part I, one can prove that e is negative 
if the correlation function has no oscillatory compo- 
nent. Only if a pronounced oscillatory component is 
present in the spectral expansion can the value of 

become positive. 
A higher-order extension of this modified M R T A  

would be the use of a series of exponentials with com- 
plex relaxation times, the parameters determined ac- 
cording to the GME principles [2, 7], i.e., reproducing 
a certain number of generalized moments. Such an 
extension may also be employed to check the quality 
of the modified MRTA. 

3.2. Field amplitude fluctuations 

We have seen in the previous section that, in addition 
to the low-frequency moment #_ t ,  the second mo- 
ment #-2 is necessary to describe the behavior of 
the field amplitude fluctuations of the detuned single 
mode laser with the modified MRTA. In order to 
calculate both matrix elements, we introduce, similar- 
ly to Sect. 2.2, the auxiliary vector functions 

p_,  (E)= ( -  1) ~ [L2 (E)] - "E  for n = 1, 2. (3.5) 

They are given as solutions of the equations 

L2 (E) #_,(E) = - p_(,_ a)(E) for n = 1, 2, (3.6) 

with Po (E) = E as right hand side function of the first 
equation, and reflective boundary conditions [7, 18]. 
With the ansatz 

,E,_/~)(IEI) ~x>(IEI)~/cos ~o~ 

for n =  1,2, 

we finally arrive at the set of equations 

1 (a- lE[2)6 / 
L~-(IEI) IEI 2 {#~I)(igl) ~ 

-(~-IEI2),~ L~(IEI)--IE@J \~'(IEI)} 

(3.7) 

= _ { ~  P(IEI)~ (3.8 b) 
~21>(IEI)]" 

( L~-(Iel) ]E~2 

-(a-IE[2)6 

and 



Again, reflective boundary conditions holds for the 
scalar functions ~r for [El =0  and [El ~ Qo. Since 
the same set of equations as in (3.8) holds for the 
functions Y@~)([Et) and #~,t)([E[), they are equal to 
#~J(IE1) and ~E~)(tEt), respectively. Therefore, only 
the above equations have to be considered. 

Equations (3.8) bear strong similarities to (2.25) 
and can again be solved numerically by discretization 

of the operator [L~-(]E[)-1~12] according to [7]. In 

contrast to the case in Sect. 2,2, here the discretization 
does not lead to a simple tri-diagonal form of the 
resulting linear equations, due to the off-diagonal ele- 
ments being oc6. However, the resulting matrix still 
has a simple band structure. The linear equations re- 
sulting from (3.8) can, therefore, be solved either be 
rearrangement into a band-diagonal structure and 
employing numerical routines for such a situation 
[19], or by employing sparse matrix techniques (see 
[7] and references cited therein) directly. We chose 
the latter way in our calculations. 

The matrix elements are determined, finally, from 
the auxiliary functions p~J). (] E J) through integration 

~_, = (aE* [L2 (~)]-",~E) 
2 ~  cO 

= ~ [. IEI[E'P-.(E)JPo(IEI)dlE[dcP 
0 0 

=2~  ~ IEIZ~2l(1EI)po(lNI)dlEI for n = l ,  2. 
o 

(3.9) 

Figure 4a shows our numerical results for the line- 
width factor e, (2.27), and Fig. 4b shows the results 
for the frequency shift f2e, both for a value of the 
detuning parameter 6 of unity. For sake of compari- 

541 

son with the case of no detuning, our results from 
Sect. 2.2 are included in Fig. 4a (6 =0). These results 
are compared to the results by Seybold and Risken 
[13, 14] for the real and imaginary part of the lowest 
nonzero eigenvalue of Ld(E), respectively. The devia- 
tions are in general quite small, thereby justifying the 
assertion in [13] that eigenvalues other than the low- 
est one give only minor contributions to the effective 
behavior of the field amplitude fluctuations. 

Again, we have checked the corresponding line- 
shapes. Figure 5 shows a comparison of the lines- 
hapes for a pump-parameter a=4,  and a detuning 
parameter 6--1. As was the case in Sect. 2, a higher- 
order approximation shows that our MRTA descrip- 
tion of the lineshape is already indistinguishable from 
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Fig. 5. Lineshape (2.12) of the field amplitude fluctuations resulting 
from the approximations in Fig. 4 for a pump-parameter a = 4 and 
a detuning-parameter 6 =  1; the linetypes correspond to those in 
Fig. 4 
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Fig. 4a and b. Linewidth factor r (a) and frequency shift •E (b) for the field amplitude fluctuations vs. pump-parameter a in the detuned 
laser for values of the detuning parameter 6 =0, 1. ( - - )  is our result from a numerical solution of (3.8) and (3.9) and an extended MRTA 
according to Sect. 3,1; ( . . . .  ) is the result of Seybold and Risken [13, 14] 
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the exact lineshape. Seybold and Risken's results are 
very close to the actual lineshape, however our results 
represent again an additional small improvement. 

4. Discussion 

We have demonstrated in this contribution the appli- 
cation of the MRTA to correlation functions in a 
generic two-dimensional stochastic system, the sto- 
chastic description of the single mode laser. It was 
shown that already the MRTA-description of the 
spectral lineshape of the fluctuations is indistinguish- 
able from the exact lineshape. The quality of the effec- 
tive linewidths determined from this approach is, 
therefore, slightly better than the one derived from 
an eigenvalue analysis by taking the lowest eigen- 
value. In our approach, the effective linewidth can 
be calculated either using analytical expressions in 
the form of quadratures, (2.16), or by solving a single 
system of linear equations (two coupled equations in 
the case of the detuned laser). We, therefore, consider 
this method to be somewhat simpler numerically and 
more effective than approaches based on an analysis 
of the lowest eigenvalues. 

An extension of our approach to systems with 
still more complicated higher-dimensional state space 
is readily possible [28]. Models for multi-mode lasers 
[29-33], and models that describe effects of additive 
and multiplicative colored noise in lasers [34-38] are 
particularly interesting stochastic systems in this con- 
text. The theoretical analysis of stow fluctuations in 
such systems has up to now concentrated on the de- 
termination of first passage times for the switching 
between different stable states, or on the determina- 
tion of the lowest eigenvalue. With the MRTA and 
its higher-order extension, the GME, a more refined 
analysis, in particular taking into account the specific 
properties of the different correlation functions of in- 
terest, would be possible. In addition, using the 
MRTA for correlation functions in bistable colored 
noise systems would give a simpler approach to the 
problem of switching times in those systems, since 
it removes mathematical problems associated with the 
boundary conditions for first passage time problems 
[37]. 

We thank the referee for drawing our attention to Ref. 24. This 
work was supported by a grant  from the Deutsche Forschungsge- 
meinschaft  (Schu 523/1-1). 

Appendix: MRTA for 1 d stochastic models 
with multiplicative white noise 

The influence of fluctuations of the pump-parameter 
on the laser process, e.g. relevant in dye lasers, can 

be described by stochastic models featuring multipli- 
cative noise [20-23]. The starting point of such a de- 
scription is a (formal) nonlinear Langevin equation, 
e.g. for the intensity I, of the form 

d 
I (t) = h (I) + g (I) ~ (t). (A 1) 

h(1) and g(I) are functions depending on the model 
employed, and ~(t) is a Gaussian noise with a white 
spectrum. In the Stratonovitch interpretation [14] 
(A 1) is equivalent to a Fokker-Planck equation with 
a Fokker Planck operator 

9 2 
L (I) = -- ~ [h (I) + g (I) g' (I)3 + ~ -  g2 (I). (A2) 

This operator can be easily brought into Smolu- 
chowski form, 

L ( I ) = f l D ( I ) [ ~ + ( ~ U ( I ) ) ] ,  (A 3) 

describing a diffusion process in the potential U(I) 
with the position-dependent diffusion coefficient D (I). 
In our case these quantities are 

D(I)=g2(I), (14) 
I 

U (I) = In g (I) - ~ dI' h (I')/g 2 (I'). (1 5) 

The stationary distribution following from oper- 
ator (A2) is the Boltzmann distribution po(I)oc 
exp [ -  U(I)]. 

Employing the form (A3) for the Fokker-Planck 
operator, correlation functions in such systems can 
now be analyzed along the same lines as we have 
done in the main part of the present paper. In particu- 
lar, for the autocorrelation function of the intensity 
fluctuations, 

Ci(t) = QS I (O) hi(t)) ~ CI(0 ) exp(-t /z,) ,  (A6) 

the mean relaxation time rE is again given by an inte- 
gral expression, see Sect. 2.1, 

z~ = - <6I [L + (I)] -lc~I>/CI (0) 

; S '/ = dI[D(I)po(I)] -1 dI'po(I ) CI(O). (A7) 
o 

In addition, the low-frequency moments necessary for 
higher-order approximations can be readily deter- 
mined by applying the integral expressions we derived 
in [18]. 

Mean relaxation times for correlation functions 
in two stochastic models with multiplicative white 
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noise, the Verhulst model and the Stratonovitch mod- 
el, have recently been determined by Jung and Risken 
[221, employing the integral expression in (A 7) which 
they derived independently. Their numerical analysis 
indicates that in those models an MRTA is sufficient 
for the description of the correlation functions only 
for weak noise. For larger values of the noise-parame- 
ter the correlation functions exhibit a more complicat- 
ed behavior, which can probably be described by gen- 
eralizing the MRTA (A 6) to a higher-order approxi- 
mation, consisting of two or three exponentials. 
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